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 Computational Nosology 
and  Precision Psychiatry

A Proof of Concept

Karl J. Friston

Abstract

This chapter provides an illustrative treatment of psychiatric morbidity that offers an 
alternative to the standard nosological model in psychiatry. It considers what would 
happen if we treated diagnostic categories not as putative causes of signs and symp-
toms, but as diagnostic consequences of psychopathology and pathophysiology. This 
reconstitution (of the standard model) opens the door to a more natural formulation of 
how patients present and their likely response to therapeutic interventions. The chapter 
describes a model that generates symptoms, signs, and diagnostic outcomes from latent 
psychopathological states. In turn, psychopathology is caused by pathophysiological 
processes that are perturbed by (etiological) causes, such as predisposing factors, life 
events, and therapeutic interventions. The key advantages of this nosological formula-
tion include: (a) the formal integration of diagnostic (e.g., DSM) categories and latent 
psychopathological constructs (e.g., the dimensions of RDoC); (b) the provision of a 
hypothesis or model space that accommodates formal evidence-based hypothesis test-
ing or  model selection (using Bayesian model comparison); (c) the ability to predict 
therapeutic responses (using a  posterior predictive density), as in  precision medicine; 
and (d) a framework that allows one to test hypotheses about the interactions between 
pharmacological and psychotherapeutic interventions.  These and other advantages are 
largely promissory at present: the purpose of this chapter is to show what might be pos-
sible, through the use of idealized simulations. These simulations can be regarded as a 
(conceptual) prospectus that motivates a computational  nosology for psychiatry.

Introduction

One of the key issues addressed by our working group at this Forum (Flagel 
et al., this volume) was the status of  psychiatric nosology and how it might 
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be informed by advances in computational neurobiology (Redish and Johnson 
2007; Montague et al. 2012; Wang and Krystal 2014). In brief, our starting 
point was the realization that  diagnostic categories are not the causes of psy-
chopathology—they are (diagnostic) consequences. Although rather obvious 
in hindsight, this was something of a revelation, largely because it disclosed 
the missing link between putative causes of psychiatric illness (e.g., genetic 
predisposition, environmental stressors, iatrogenic) and the consequences, as 
observed by clinicians (e.g., symptoms, signs and, crucially, diagnostic out-
come). In what follows, I briefl y rehearse the ideas—borrowed from compu-
tational neurobiology—that we hope might close this gap (for full discussion, 
see Flagel et al., this volume). This treatment provides a technical summary 
of our conclusions, using an illustrative (simulated) case study of nosology, 
diagnosis, and prognosis.

The principal contribution of a formal or computational approach to no-
sology rests on the notion of a  generative model. A generative model gener-
ates consequences from causes—in our case, symptoms, signs, and diagno-
ses—from underlying psychopathology and pathophysiology. Generally, these 
models are  state-space models that describe dynamics and trajectories in the 
space of latent (e.g., pathophysiological) states. These states are latent or hid-
den from direct observation and are only expressed in terms of measurable 
consequences, such as symptoms and signs. The utility of a generative model 
lies in the ability to infer latent states from observed outcomes and, possibly 
more importantly, assess the evidence for one model relative to others, given 
a set of measurements. This is known as (Bayesian) model comparison, where 
the evidence is simply the probability of any sequence of observations under a 
particular model (Stephan et al. 2009b). To assess the evidence for a particular 
model, it is necessary to fi t the model to observed data, a procedure known as 
 model inversion. This is because the mapping from causes to consequences is 
inverted, to infer from consequences to causes (e.g., inferring pathophysiol-
ogy from symptoms). Furthermore, having inverted a model—by optimizing 
its parameters to maximize model evidence—one can then simulate or predict 
new outcomes in the future using something called the posterior predictive 
density. Heuristically, this is the technology behind  weather forecasts, where 
the generative model is a detailed state-space model of meteorological dy-
namics (Young 2002). So can we conceive of an equivalent meteorology for 
psychiatry?

In the past decade, there have been considerable advances in using state-
space models of distributed neuronal processes to understand (context-sensi-
tive) connectivity and functional architectures in the brain. This is known as 
 dynamic causal modeling, which accounts for a signifi cant number of papers 
in the imaging neuroscience literature (Friston et al. 2003; Daunizeau et al. 
2011a). In what follows, I apply exactly the same (computational neurosci-
ence) principles to the problem of modeling the causes of nosological outcomes 
in psychiatry. Indeed, all the examples below use standard Bayesian model 
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inversion schemes that are available in freely available academic software: 
the simulations described below can be reproduced by downloading the SPM 
software (http://www.fi l.ion.ucl.ac.uk/spm/) and invoking the Matlab script 
DEM_demo_ontology.m. The dynamic causal modeling of psychopathology 
can, in principle, offer a number of advantages over the standard nosological 
model. As noted in the abstract and by Flagel et al. (this volume), these in-
clude: (a) the formal integration of diagnostic (e.g., DSM) categories and latent 
psychopathological constructs (e.g., the dimensions of  RDoC) (Stephan and 
Mathys 2014), (b) the provision of a hypothesis or model space that accom-
modates formal evidence-based hypothesis testing (Krystal and State 2014), 
and (c) the ability to predict therapeutic responses (using a posterior predictive 
density). Crucially, by adopting a dynamic modeling approach, one can prop-
erly accommodate the personal history and trajectory of individual patients in 
determining (and predicting) the course of their illness.

Our overall approach to nosology (and its promissory advantages) may 
seem rather abstract and perhaps even grandiose. This chapter should there-
fore be taken as a prospectus for future discussions about nosology and the 
potential for individualized or precision psychiatry in the future. Its purpose is 
to illustrate what could be possible, in an idealized world, if we were able to 
use clinical data to optimize generative models of psychopathology. Whether 
or not this is possible with current data is an outstanding question. In short, 
this chapter offers a (mathematical) sketch of what a computational nosology 
could look like.

I begin by describing a formal model that generates symptomatic and di-
agnostic outcomes from latent (pathophysiological and psychopathological) 
causes. This model should not be taken too seriously; it is just used to illustrate 
the promise of such modeling initiatives and to show how a formal approach to 
nosology forces one to think carefully about the known and unknown variables 
in psychiatric processes and how they infl uence each other. In the next section, 
I consider the use of ratings of symptoms and signs (and diagnosis) to estimate 
or infer their latent causes. This is a necessary prelude for model comparison 
and is discussed briefl y. Finally, prognosis and prediction are considered by 
using the generative model to predict the outcome of a (simulated) schizoaf-
fective process and its response to treatment.

Generative Models for Psychiatric Morbidity

This section introduces the general form of generative (dynamic causal) mod-
els for psychiatric morbidity and a particular example that will be used to illus-
trate  model inversion,  model selection, and  prediction in subsequent sections. 
As noted above, a generative model generates consequences from causes. 
The basic form assumed here starts with the (observable) causes of psychiat-
ric illness, such as genetic or environmental predispositions, and therapeutic 
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interventions. These factors induce pathophysiological states, such as aber-
rant dopamine receptor availability or glucocorticoid receptor function, to alter 
their trajectories (i.e., time courses or fl uctuations) over a course of weeks 
to months. These latent pathophysiological states then determine psychopa-
thology, cast in terms of latent cognitive, emotional, or behavioral function 
(e.g., low mood, psychomotor poverty, thought disorder). Psychopathological 
states correspond to the constructs underlying things like  Research Domain 
Criteria (RDoC) (Kaufman et al. 2015) and clinical brain profi ling (Peled 
2009). Finally, psychopathological states generate measured symptoms using, 
for example, standardized instruments (e.g., PANSS [Kay 1990], Beck depres-
sion inventory, mini mental state) or diagnostic outcomes (e.g., schizophrenia, 
major affective disorder, schizoaffective disorder).

Note that in this setup, a  diagnosis represents an outcome, provided by a cli-
nician. In other words, symptoms, signs, and diagnosis have a common cause, 
where the diagnostic categorization provides a useful summary outcome that 
integrates aspects of psychopathology which may not be covered explicitly by 
standardized symptom ratings or particular signs (e.g., psychomotor poverty, 
EEG abnormalities, abnormal  dexamethasone suppression).

This formulation of psychiatric nosology is largely common sense and 
reiterates what most people would understand about psychiatric disorders. 
However, can this understanding be articulated formally in a way that can 
be used to make quantitative predictions and test competing etiological hy-
potheses? This is where a formal nosology or generative model comes into 
play. The fi rst step is to construct a  graphical model of dependencies among 
the variables generating measurable outcomes. Figure 11.1 (left panel) shows 
the graphical model that summarizes the probabilistic dependencies among 
etiological causes u(t), pathophysiological states x(t), psychopathology v(t), 
and, fi nally, symptoms and diagnosis s(t), Δ(t). In this format, the variables in 
white circles correspond to latent states that are hidden from direct observa-
tion, while the observable outcomes are in the cyan circle.

Probabilistic dependencies are denoted by arrows that entail (time-invari-
ant) parameters (θ = θs, θn, θp). This formulation clarifi es the roles of different 
quantities and makes their interdependencies explicit. For example, a diagnos-
tic classifi cation at a particular time would be an outcome variable, whereas a 
patient’s drug history would be an etiological cause that infl uenced pathophys-
iology. Having established the form of the graphical model, it is now necessary 
to specify the nature of the dependencies within and among  latent variables. 
An example is provided in the right panel and can be described as follows.

A Generative (Dynamic Causal) Model

This example of a generative model is deliberately very simple and restricts 
itself to modeling a limited differential diagnosis that includes (a simulation 
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of)  schizophrenia,  affective disorder,  schizoaffective disorder, and a remitted 
state. These diagnostic outcomes are accompanied by six symptom scores that 
have been normalized to lie between plus and minus one. Furthermore, only a 
limited number of exogenous causes and  latent variables are considered: spe-
cifi cally, a single therapeutic cause perturbs the evolution of three physiologi-
cal states, from which two psychopathological states are derived. At any one 
time, the location in the psychopathological state-space determines a symptom 
profi le (through a linear mixture of psychopathological states that is passed 
through a sigmoid function). Diagnostic outcomes are, here, encoded by a 
probability profi le over the differential diagnosis (i.e., the relative confi dence 
a clinician places in the differential diagnoses). In the model, the probability 
of any one diagnosis corresponds to the relative proximity to a particular point 
in psychopathological state-space. In other words, as the disorder progresses, 
a trajectory is traced out in a two-dimensional psychopathological state-space, 
where, at any one time, the prevalent diagnosis is determined by the location to 
which the current state is closest. Technically, this has been modeled by a  soft-
max function of diagnostic potential, where diagnostic potential is the (nega-
tive) Euclidean distance between the current state and the locations associated 
with each diagnostic category (encoded by θi

Δ, the color dots in Figure 11.1).
The trajectory of psychopathology is determined by the corresponding tra-

jectory through a pathophysiological state-space which has its own dynamics. 
These are encoded by equations of motion or fl ow based, in this example, on 
a Lorenz attractor (Lorenz 1963). The Lorenz form is an arbitrary choice and 
could easily be replaced by other plausible equations: Moran et al. (this volume) 
provide an example based on normal form stochastic dynamics and indeed 
optimized on the basis of Bayesian model evidence (see below). Having said 
this, the  Lorenz attractor provides a simple model of chaotic dynamics in the 
physical (Poland 1993) and biological (de Boer and Perelson 1991) sciences. 
Interestingly, it arose in the modeling of convection dynamics, which speaks 
to the analogy between the current modeling proposal and  weather forecasting. 
In this setting, the ensuing dynamics can be regarded as a canonical form for 
nonlinear coupled processes that might underlie pathophysiology in psychosis. 
It has a canonical form because, as seen in Figure 11.1 (on the right), one can 
regard the parameters as specifying coupling coeffi cients or connections that 
mediate the infl uence of one physiological state on the others. Crucially, some 
of these connections are state dependent. This is important because it means 
one can model fl uctuations in pathophysiology in terms of self-organized (cha-
otic) dynamics that have an underlying attracting set. In other words, we have a 
rough model of pathophysiological dynamics that summarize slow fl uctuations 
in neuronal (or hormonal) states that show homoeostatic or allostatic tenden-
cies (e.g., Leyton and Vezina 2014; Misiak et al. 2014; Oglodek et al. 2014; 
Pettorruso et al. 2014; see also Krystal et al., this volume).

The equations in Figure 11.1 all include random fl uctuations. These fl uctua-
tions render the generative model a probabilistic statement about how various 
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variables infl uence each other. Here, the random fl uctuations can be regarded 
as observation noise (when assessing symptoms) and random fl uctuations or 
perturbations to psychological or physiological processing (e.g., life events or 
drug misuse). In this chapter, these random fl uctuations are smooth processes 
with a Gaussian correlation function with a correlation length of half an assess-
ment interval (i.e., a few days).

There is no pretence that any of these states map in a simple way onto physi-
ological variables; rather, they stand in for mixtures of physiological variables 
that have relatively simple dynamics. The existence of mixtures is assured by 
technical theorems such as the  center manifold theorem and the  slaving prin-
ciple in physics (Carr 1981; Haken 1983; Frank 2004; Davis 2006b). Basically, 
these theorems say that any set of coupled dynamical systems can always be 
described in terms of a small number of patterns (known variously as order 
parameters or eigenmodes), which change slowly relative to fast and noisy 
fl uctuations about these patterns.

Crucially, this generative model has been constructed such that the thera-
peutic intervention changes the state-dependent coupling between the fi rst and 
second pathophysiological states (in fl uid dynamics, this control parameter is 
known as a  Rayleigh number and refl ects the degree of turbulent fl ow). This 
means we could regard this intervention as  pharmacotherapy that changes the 
coupling between different neuronal (or hormonal) systems, e.g., an infl uence 
of an atypical antipsychotic (Hrdlicka and Dudova 2015) on dopaminergic and 
serotonin receptor function responsible for monoaminergic tone in the ventral 
striatum and serotoninergic projections from the  amygdala to the paraventricu-
lar nucleus (Wieland et al. 2015; Muzerelle et al. 2016). Furthermore, I have 
introduced a parameter θ3

p that determines the sensitivity to the intervention 
that may be important in determining a  patient’s responsiveness to therapy 
(Brennan 2014).

The middle panel of Figure 11.1 provides an illustration of how a patient 
might present over time under this particular model. Imagine we wanted to 
model (six) symptom scores and a probabilistic differential diagnosis over four 
diagnoses (schizophrenia, schizoaffective, affective, and remitted), when as-
sessing an outpatient on a weekly basis for 64 weeks. A therapeutic interven-
tion, say an atypical antipsychotic, is introduced at 32 weeks and we want to 
model the response. This therapeutic input is shown in the lower left panel 
as a dotted line and affects the evolution of physiological states according to 
equations of motion on the right. These equations generate chaotic fl uctuations 
in (three) pathological states shown on the lower right. Two of these states are 
then mixed to produce a trajectory in a psychopathological state-space. This 
trajectory is shown in the middle panel as a function of time (middle left) and 
as a trajectory in state-space (red line in the middle right panel). In turn, the 
psychopathology generates symptom scores (shown as colored lines on the up-
per left) and diagnostic probabilities (shown on the upper right). The relation-
ship between the continuous (dimensional) latent space of psychopathology 
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and the (categorical) differential diagnosis is determined by diagnostic param-
eters θi

Δ defi ning the characteristic location of the ith diagnosis. These locations 
are shown as dots in the state-space: the blue dot corresponds to a diagnosis of 
remission, while the green, cyan, and red locations correspond to a diagnosis 
of schizophrenia, schizoaffective, and affective disorder, respectively. One can 
see that initial oscillations between schizophrenia and schizoaffective diagno-
ses are subverted by the therapeutic intervention. At this point, the latent patho-
physiology is drawn to its (point) attractor at zero, the most likely diagnosis be-
comes remission and the symptom scores regress to their normal values of zero. 
In short, this models a successful intervention in a pathophysiological process 
that shows chaotic oscillations expressed in terms of fl uctuating symptoms and 
differential diagnosis. Later we will see that, in the absence of therapy, these 
chaotic oscillations would otherwise produce a relapsing-remitting progres-
sion with an ambiguous diagnosis that fl uctuates between schizophrenic and 
schizoaffective. This intervention is formally similar to what is known anec-
dotally as  chaos control (e.g., Rose 2014). This example suggests that the goal 
of therapy is less about countering pathological deviations and more a subtle 
problem of suppressing chaotic or turbulent neurohormonal processes that are 
equipped with many self-organizing feedback mechanisms. Heuristically, the 
role of a clinician becomes much more like the captain of the ship that uses 
prevailing winds to navigate toward calmer waters.

This particular example is not meant to be defi nitive or valid in any sense. 
It is just one of a universe of potential models (or hypotheses) about the way 
psychiatric morbidity is generated. (Discussion will return to procedures for 
comparing models in the next section.) This example does allow us, however, 
to make a few key points about the nature of pathology and its expression. 
First, in any generative model of psychopathology there is a fundamental dis-
tinction between (time-invariant) parameters and (time-sensitive) states. This 
distinction can be regarded as the formal homologue of the distinction between 
trait and state abnormalities. For example, the patient illustrated above had 
a particular set of parameters θi

p determining the family of trajectories (and 
their attracting sets) of pathophysiology. Simply knowing these parameters, 
however, does not tell us anything about the pathological state of the patient at 
a particular time. To determine this, one needs to infer the latent pathophysi-
ology in terms of the current state x(t) using model fi tting or inversion. This 
presents a diffi cult (but solvable) problem, because we have to estimate both 
the parameters (traits) and states of a patient to determine their trajectory in 
the short term.

The second distinction this sort of model brings to the table is the distinc-
tion between parameters that are patient specifi c and those conserved over the 
population to which the model applies. In statistical terms, this corresponds 
to the difference between random and fi xed effects, where patient-specifi c ef-
fects model random variations in traits that may refl ect predisposing factors 
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(e.g., genetic predisposition). Conversely, other parameters may be fi xed over 
patients and determine the canonical form of nosology.

In the example above, this distinction is illustrated by the difference be-
tween parameters that are specifi c to each patient or pathophysiology θi

p and 
those that are inherent in the nosology θi

n. The nosological parameters defi ne a 
generic mapping from pathophysiology to psychopathology that is conserved 
over patients. Understanding this distinction is important practically, because 
nosological parameters can only be estimated from group data. Examples of 
this are given in the next section.

Model Inversion and Selection

Here let  us consider the inversion and selection of generative models based on 
measurable outcomes. The ultimate aim of modeling is to predict outcomes for 
a particular patient. The quality of these predictions rests upon a model that is 
both accurate and generalizes to the sorts of patients encountered. The quality 
of a model is scored in terms of its evidence, given some data. However, to 
evaluate model evidence, one needs to be able to invert or fi t data. This means 
that we fi rst have to ensure that models can be inverted. In other words, can we 
recover the unknown parameters and  latent variables responsible for clinical 
data? In what follows, the simulated patient above is used to see whether the 
latent states can be recovered, given the (known) therapeutic input and clinical 
outcomes (symptoms and diagnosis). Thereafter I will briefl y review Bayesian 
model comparison and discuss its crucial role in hypothesis testing and elabo-
rating a more mechanistic nosology for psychiatry in the future.

Model Inversion and Bayesian Filtering

The problem  of estimating unknown parameters and latent states from time 
series data is known as deconvolution or fi ltering in the modeling literature. 
Because we have to estimate both parameters and states, this presents a dual 
estimation problem that is usually accommodated by treating parameters as 
very slowly fl uctuating states. I will illustrate Bayesian fi ltering using an estab-
lished procedure called  dynamic expectation maximization (DEM). DEM was 
originally devised to infer latent neuronal states and the connectivity param-
eters generating neurophysiological signals in distributed brain networks and 
has been applied in a number of different contexts (Friston et al. 2008). Special 
cases of DEM include  Kalman fi ltering (when the states are known and the 
state-space model is linear).

Figure 11.2 shows the results of Bayesian fi ltering when applied to the 
symptom and diagnostic time series shown in the previous fi gure. The for-
mat is similar to the middle panel of Figure 11.1; however, here, the colored 
lines correspond not to the true values generating data but to the estimated 
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trajectories based upon Bayesian fi ltering (as implemented with the Matlab 
routine spm_DEM.m). In this example, I simulated clinical progression in the 
absence of any therapeutic intervention (as shown by the fl at line in the lower 
left panel). In the absence of any check on pathophysiology, chaotic oscilla-
tions of slowly increasing amplitude emerge over a period of 64 weeks. These 
fl uctuations are shown in terms of a trajectory in the state-space of psychopa-
thology (lower right panel) and as functions of time (middle row). Here, the 
solid lines correspond to posterior expectations (the most likely trajectories) 
that are contained within 90% Bayesian confi dence intervals (gray areas). The 
true values are shown as dotted black lines. In this example, the true and esti-
mated values were almost identical. This is because very low levels of random 
fl uctuations were used—with log precisions of twelve, eight, and four—to 
control the amplitude of random effects at the level of outcomes, psychopa-
thology, and pathophysiology, respectively (see Figure 11.1). Precision is the 
inverse variance or amplitude.

The upper panels show the resulting fl uctuations in symptom and diagnostic 
scores as a function of time in graphical format (upper left panel) and in image 
format (upper right panel). One can see clearly that the differential diagnosis of 
schizophrenia and  schizoaffective disorder vacillate every few months, refl ect-
ing an unstable and ambiguous diagnostic picture. Filtering was then repeated 
but with a therapeutic intervention at 32 weeks. The simulated response and 
inferred latent states are shown in Figure 11.3. These reproduce the results 
of Figure 11.1 and show the success of the intervention—as indicated by the 
emergence of a remitted diagnosis as time progresses (solid blue line on the 
upper left and cyan circle on the upper right).

In these illustrations, I estimated both the unknown states generating (simu-
lated) clinical data and the patient-specifi c (trait) parameters governing patho-
physiological dynamics. The estimated and true parameters are shown in the 
upper left panel of Figure 11.4: estimated values are shown as gray bars, true 
values in black, and white bars show 90% confi dence intervals. The accuracy 
of these estimates is self-evident, with a slight overconfi dence that is character-
istic of approximate  Bayesian inference implicit in dynamic expectation maxi-
mization (MacKay 1995). Although these estimates show that, in principle, 
one can recover the traits and states of a particular subject at a particular time, I 
used the true values of the nosological parameters coupling pathophysiology to 

Figure 11.2 (continued) The colored lines correspond to clinical outcomes (upper 
left panel) and latent psychopathology (middle left panel). The symptom scores and 
differential diagnosis are shown as functions of time (upper left) and in image format 
(upper right). The top image shows the changes in differential diagnosis, with the di-
agnosis of remission in the fi rst row; the lower panel shows the fl uctuations in the fi rst 
four symptom scores. Note that, in the absence of treatment, the chaotic fl uctuations 
between schizophrenia and schizoaffective regimes of latent psychopathology slowly 
increase in amplitude.
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Empirical Bayesian analysis of  dynamic causal modeling estimators refers to 
the hierarchical modeling of within- and between-subject effects which may or 
may not be treated as random effects. Note that the third nosological parameter 
has an estimated value of zero. This is important because it leads us into the 
realm of Bayesian model comparison and evidence-based hypothesis testing.

Bayesian Model Comparison and Hypothesis Testing

Above,  we saw that this sort of model can, in principle, be inverted such that 
underlying (latent) psychopathological and pathophysiological states can be 
inferred, in the context of (unknown) subject-specifi c parameters or traits. 
However, this does not mean that the model itself has any validity or will 
generalize to real clinical data. In other words, how do we know whether we 
have a good model?

This is a question of model comparison. In short, the best model provides 
an accurate explanation for the data with the minimum complexity. The mod-
el evidence refl ects this, because model evidence is equal to accuracy minus 
complexity. The complexity term is important and ensures that models do not 
overfi t data, and will thus generalize to new data. The model evidence is evalu-
ated by marginalizing (averaging over) unknown parameters and states to pro-
vide the probability of some data, under a particular model. The model here is 
defi ned in terms of the number of states (and parameters) and how they depend 
upon each other. A simple example of model comparison is provided in Figure 
11.4 (lower panels).

In our model, there are a number of ways in which the physiological states 
could infl uence psychopathology. There are two physiological states that can 
infl uence two pathophysiological states, creating four possible dependencies 
that may or may not exist. This leads to 16 = 24 models which cover all com-
binations of nosological parameters (see the lower left panel of Figure 11.4). 
We can evaluate the evidence for each of these 16 models by inverting all 16 
and evaluating the evidence or, as illustrated here, inverting the model with all 
four parameters in place and computing the evidence of all reduced models, 
with one or more parameters missing. This is known as Bayesian model re-
duction, which is an effi cient way of performing Bayesian model comparison 
(Friston and Penny 2011). The results of this model comparison are shown in 
the lower right panel of Figure 11.4 and suggest that the posterior probability 
of model 15 is much greater than any of the others. In this model, the infl uence 
of the second pathophysiological state on the fi rst psychopathological state has 
been removed. Removing this parameter reduces model complexity without 
any substantial loss in accuracy and therefore increases model evidence. We 
might have guessed that this was the case by inspecting the posterior density 
of the third nosological parameter mediating this model component (see the 
upper right panel).

From “Computational Psychiatry: New Perspectives on Mental Illness,”  
A. David Redish and Joshua A. Gordon, eds. 2016. Strüngmann Forum Reports, vol. 20, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03542-2.



216 K. J. Friston 

This is a rather trivial example of model comparison but illustrates an im-
portant aspect of  dynamic causal modeling; namely, the ability to test and 
compare different models or hypotheses. Although not illustrated here, one 
can imagine comparing models with different numbers of pathophysiologi-
cal states and different forms of dynamics. One could even imagine compar-
ing models with a different graphical structure. One interesting example here 
would be the modeling of psychotherapeutic interventions that might infl uence 
pathophysiology through experience-dependent plasticity. This would neces-
sitate comparing models in which therapeutic intervention infl uenced psycho-
pathology, which couples back to pathophysiology, through the parameters of 
its dynamics. This is illustrated by the dotted arrows in Figure 11.1.

Many other examples lend themselves to speculation: crucial examples in-
volve an increasingly  mechanistic interpretation of pathophysiology, in which 
pathophysiological states could be mapped onto neurotransmitter systems 
through careful (generative) modeling of electrophysiological and psycho-
physical measurements (Stephan and Mathys 2014). One could also contem-
plate comparing models with different sorts of inputs or causes, ranging from 
social or environmental perturbations (e.g., traumatic events) to genetic factors 
(or their proxies like family history). Questions about whether and where ge-
netic polymorphisms affect pathophysiology are formalized by simply com-
paring different generative models that accommodate effects on different states 
or parameters. For example, do models that include genetic biases on physi-
ological parameters have greater evidence than models that do not?

The potential importance of model comparison should not be underesti-
mated. Here I have tried to give a fl avor of its potential. It is also worth noting 
that this fi eld is an area of active research; fast and improved schemes for scor-
ing large model spaces are continually being developed (e.g., Viceconti et al. 
2015). One can construe an exploration of model space as a greedy search over 
competing hypotheses and a formal statement of the scientifi c process. This 
may be especially relevant for psychiatry, which addresses the specifi c prob-
lem of integrating both physiological and psychological therapies, and points 
to the need for generative models that map between these two levels of descrip-
tion. In the fi nal section, let us turn to the more pragmatic issue of predicting 
response to  treatment for an individual patient.

Prediction and Personalized Psychiatry

Let  us assume that  we used Bayesian model comparison to optimize our  gen-
erative model of psychosis  and  prior probability distributions over its param-
eters. Can we now use the model to predict the outcome of a particular inter-
vention in a given patient? In the previous section, we saw how clinical data 
from a single subject could be used to estimate subject-specifi c parameters 
(traits) and states at a particular time. In fact, the parameter estimates in Figure 
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11.4 were based on the fi rst 32 weeks of data before any treatment began. 
This means that we now have estimates of how this particular subject would 
respond from any physiological state and the physiological state at the end of 
the period of assessment. Given these (posterior probability) estimates, there 
are several ways in which we can predict clinical  prognosis and responses to 
different treatments. The simplest way would be to sample from the posterior 
distribution and integrate the generative model with random fl uctuations to 
build a probability distribution over future states. We will take a related but 
simpler approach and apply  Bayesian fi ltering to null data with zero precision; 
in other words, data that has yet to be acquired. This fi nishes a predictive distri-
bution over future trajectories based on the posterior estimates of the subject’s 
current parameters and states.

Figure 11.5 shows the results of this  predictive fi ltering using the same for-
mat as Figure 11.3. However, there are two crucial differences between Figures 
11.5 and 11.3. First, we are starting from latent states that are posterior esti-
mates of the subject’s current state and, more importantly, the trajectories are 
pure predictions based upon pathophysiological dynamics. One can see that 
the predicted response to treatment (at 16 weeks) has a similar outcome to 
the actual treatment (although the trajectories are not exactly the same, when 
comparing the predicted and actual outcomes in Figures 11.3 and 11.5, re-
spectively). Figure 11.6 shows the same predictions in the absence of treat-
ment, again showing the same pattern of fl uctuation between schizophrenia 
and  schizoaffective diagnosis encountered in Figure 11.2.

The right panel of Figure 11.6 also includes trajectories with increasing 
levels of therapeutic intervention (ranging from 0 to 2). The fi nal outcomes 
of these interventions are summarized on the lower left in terms of the prob-
ability of a diagnosis of remission at 48 weeks. This illustrates the potential for 
predictive modeling of this sort to provide dose-response relationships and ex-
plore different therapeutic interventions (and combinations of interventions). 
In this simple example, there is a small probability that the patient would remit 
without treatment, which dips and then recovers to levels of around 50% with 
increasing levels of therapy. The apparent spontaneous recovery would not, 
however, be long lasting, as can be imputed from the chaotic oscillations in 
Figure 11.1.

Conclusion

In this chapter, I have illustrated what a computational nosology could look like 
using simulations of clinical trajectories, under a canonical generative model. 
The potential of this approach to nosological constructs can be motivated from 
a number of perspectives. First, it resolves the dialectic between categorical 
diagnostic constructs (e.g., DSM) and those based on latent dimensions of 
psychopathology or pathophysiology (e.g., RDoC). Both constructs play an 
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essential role in a generative modeling framework, as diagnostic outcomes and 
latent causes, respectively. To harness their complementary strengths, it is only 
necessary to determine how one follows from the other, which is an inherent 
objective of  model inversion and  selection. Second, I have tried to emphasize 
the potential for an evidence-based approach to nosology that can operational-
ize mechanistic hypotheses in terms of Bayesian model comparison. This pro-
vides an integration of basic research and clinical studies which could, in prin-
ciple, contribute synergistically to an evidenced-based nosology. Finally, I have 
illustrated the practical utility of using the predictions of (optimized) genera-
tive models for individualized or precision psychiatry (Chekroud and Krystal 
2015), in terms of providing probabilistic predictions of responses to therapy.

Although I have emphasized the provisional nature of this approach, it 
should be acknowledged that one could analyze existing clinical data using the 
model described in this chapter with existing algorithms. Indeed, there are hun-
dreds of publications using  dynamic causal modeling to infer the functional 
coupling among hidden neuronal states in the neuroimaging literature. In other 
words, it would be relatively simple to apply the techniques described above to 
existing data at the present time. The real challenge, however, lies in searching 
the vast model space to fi nd models that are suffi ciently comprehensive yet 
parsimonious to account for the diverse range of clinical measures—in a way 
that generalizes from patient to patient. This challenge is not necessarily insur-
mountable: one might argue that if we invested the same informatics resources 
in psychiatry as has been invested in  weather forecasting and geophysical 
modeling, then considerable progress could be made. Ultimately, one could 
imagine model-based psychiatric  prognosis being received with the same con-
fi dence with which we currently accept daily weather forecasts. There are, of 
course, differences between psychiatric and meteorological forecasting. For 
example, the latter must handle the “big data problem” with a relatively small 
model space. Conversely, psychiatry may have to contend with a “big theory 
problem,” with a relatively large model space but more manageable data sets.

Perhaps the more important contribution of a formal nosology is not in the 
pragmatic application to  precision medicine (i.e., through the introduction of 
prognostic apps for clinicians), but in the use of Bayesian model selection to 
test increasingly mechanistic hypotheses and pursue a deeper understanding of 
pathogenesis in psychiatry. This is the way in which dynamic causal modeling 
has been applied in computational neuroscience and, as such, is just a formal 
operationalization of the scientifi c process.
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